Schedule II
Controlled Substances: Basics and Beyond

James L. Besier, Ph.D., R.Ph., FASHP
Adjunct Associate Professor
College of Nursing
Adjunct Assistant Professor
James L. Winkle College of Pharmacy
University of Cincinnati
February 2, 2013

Objectives

• Definition(s)
• Cytochrome P450 processes/drug interactions
• Equi-analgesic dosing for pain management
Controlled Substances

- a drug or other substance listed in the Controlled Substance Act (CSA) of the Code of Federal Regulations (CFR)

Controlled Substances, con’t.

- divided into five schedules based on:
 - currently accepted medical use
 - relative abuse potential
 - likelihood of causing dependence

Controlled Substances, Schedule I

- No currently accepted medical use

- Examples:
 - Lysergic acid diethylamide (LSD)
 - Methyleneoxyamphetamine “Ecstasy”
Controlled Substances, Schedule II

- High potential for abuse which may lead to severe psychological or physical dependence
- Examples of narcotics:
 - morphine
 - hydromorphone (Dilaudid®)
 - meperidine (Demerol®)
- Examples of stimulants:
 - amphetamine (Dexedrine®)
 - methamphetamine (Desoxyn®)
 - methylphenidate (Ritalin®)

Controlled Substances, Schedule III

- Less potential for abuse than substances in schedules I or II and abuse may lead to low or moderate physical dependence or high psychological dependence

Controlled Substances, Schedule III, con’t.

- Examples include:
 - Combination products containing less than 15 mg of hydrocodone per dosage unit
 - Vicodin®, Lortab®
 - Combination products containing less than 30 mg of codeine per dosage unit
 - Tylenol with codeine®
 - oxandrolone (Anadrol®)
Controlled Substances, Schedule IV

- Lower potential for abuse relative to substances in schedule III

Controlled Substances, Schedule IV, cont.

- Example of schedule IV narcotic:
 - propoxyphene (Darvocet-N 100®)

- Other examples:
 - alprazolam (Xanax®)
 - diazepam (Valium®)
 - lorazepam (Ativan®)
 - midazolam (Versed®)
 - triazolam (Halcion®)

Controlled Substances, Schedule V

- Lower potential for abuse relative to substances listed in schedule IV
- Consist primarily of preparations containing limited quantities of certain narcotics
- Generally indicated for antitussive, antidiarrheal and analgesic purposes
- Examples include cough preparations containing not more than 200 mg of codeine per 100 ml
 - Robitussin AC®
 - Phenergan with Codeine®
Objectives

• Definition(s)

• Cytochrome P450 processes/drug interactions

• Equi-analgesic dosing for pain management

Cytochrome P450 Enzyme Processes

- Many drugs eliminated from body by being chemically altered to LESS lipid-soluble products
 - Process of metabolism
 - Phase 1: drug hydrolysis, oxidation and reduction
 - Phase 2: glucuronidation, sulfation, glutathione conjugation, acetylation and methylation
 - Excreted by the kidneys or the bile

Cytochrome P450 Enzyme Processes, con’t.

- Phase I and Phase II enzyme activity can be either inhibited or induced
 - Inhibition will result in increased concentration of the drug
 - Induction will result in decreased concentration of the drug
Cytochrome P450 Enzyme Processes, con’t.

- Cytochrome P450 enzymes (CYP) may be responsible for at least partial metabolism of approximately 75% of all drugs
- Family designated by numbers (1, 2, 3, etc.)
- Subfamily designated by letters (A, B, C, etc.)
- Key human enzyme sub-families include: CYP1A, CYP2A, CYP2B, CYP2C, CYP2D, CYP2E, and CYP3A

Cytochrome P450 Enzyme Processes, con’t.

- CYP enzymes are found in the endoplasmic reticulum of human tissues
 - Liver*
 - Intestine*
 - Skin
 - Kidneys
 - Brain
 - Lungs
- *most predominant

Cytochrome P450 Enzyme Processes, con’t.

- Concentration of CYP enzymes is relatively equally distributed throughout the body, the relative contribution to metabolism is:
 - CYP3A4 (approx. 50%)
 - CYP2D6 (approx. 25%)
 - CYP2C9 (approx. 15%)
 - CYP1A2
 - CYP2C19
 - CYP2A6
 - CYP2E1
Cytochrome P450 Enzyme Processes, con’t.

<table>
<thead>
<tr>
<th>Drug</th>
<th>1A2</th>
<th>2A6</th>
<th>2B6</th>
<th>2C8</th>
<th>2C9</th>
<th>2C19</th>
<th>2D6</th>
<th>2E1</th>
<th>3A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>alfentanil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocaine</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codeine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fentanyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methadone</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methamphetamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentobarbital</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phenobarbital (C-IV)</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sufentanil</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practical application:
- Methadone is a moderate inhibitor of CYP2D6
- All of the following are metabolized, at least in part, by CYP2D6:
 - Quinidine
 - SSRIs (FLUoxetine, PARoxetine, sertraline)
 - Thiazide Diuretics
 - Zidovudine

Objectives
- Definition(s)
- Cytochrome P450 processes/drug interactions
- Equi-analgesic dosing for pain management
Drug Equi-analgesic Dose (mg)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Parenteral</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprenorphine (C-III)</td>
<td>0.4</td>
<td>—</td>
</tr>
<tr>
<td>Butorphanol (C-IV)</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Fentanyl (C-II)</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>Hydromorphone (C-II)</td>
<td>1.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Levorphanol (C-II)</td>
<td>Acute: 2</td>
<td>Acute: 4</td>
</tr>
<tr>
<td></td>
<td>Chronic: 1</td>
<td>Chronic: 1</td>
</tr>
<tr>
<td>Meperidine (C-II)</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Methadone (C-II)</td>
<td>See guidelines</td>
<td>Variable</td>
</tr>
<tr>
<td>Morphine (C-II)</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>Nalbuphine (N/A)</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Opioid Analgesics</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Oxymorphone (C-II)</td>
<td>1</td>
<td>[1]</td>
</tr>
<tr>
<td>Paroxetine (C-IV)</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Tramadol (C-II)</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

Risk Evaluation and Mitigation Strategy (REMS)

Risk Evaluation and Mitigation Strategy (REMS), cont.

“…. a strategy to manage a known or potential serious risk associated with a drug or biological product. A REMS will be required if the Food and Drug Administration (FDA) determines that a REMS is necessary to ensure the benefits of the drug or biological product outweigh its risks. A REMS can include a Medication Guide, Patient Package insert, a communication plan, elements to assure safe use and an implementation system.”

1/29/2013
Risk Evaluation and Mitigation Strategy (REMS), con’t.

- Risk management plan
- Required of the pharmaceutical company
- Goes beyond a drug’s written prescribing information
- Developed to address the unique risk-benefit profile of a drug or drug class

Risk Evaluation and Mitigation Strategy (REMS), con’t.

- Required for long-acting and extended-release prescription opioids
- Amount of opioid can be much more than the amount of opioid contained in an immediate-release dosage form because extended-release dosage forms are designed to release the opioid over a longer period of time
- Long-acting opioids can take many hours to be cleared from the body
- Thus, risk is magnified

Opioid REMS

- Central component of an opioid REMS program is an education program for providers (physicians, nurse practitioners, physician assistants) and patients
Opioid REMS: Providers

Education will include:

- information on weighing risks/benefits of opioid therapy
- choosing patients appropriately
- managing and monitoring patients
- counseling patients on safe use of these products
- how to recognize evidence of and potential for opioid misuse, abuse and addiction

Opioid REMS: Patients

Education will include:

- Patient-friendly language on:
 - how to use and store medication
 - product risk

<table>
<thead>
<tr>
<th>TRADE NAME</th>
<th>GENERIC NAME</th>
<th>SPONSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avinza</td>
<td>morphine sulfate extended-release capsules</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Butrans</td>
<td>buprenorphine transdermal system</td>
<td>Purdue Pharma</td>
</tr>
<tr>
<td>Dolophine</td>
<td>methadone hydrochloride tablets</td>
<td>Roxane</td>
</tr>
<tr>
<td>Duragesic</td>
<td>fentanyl transdermal system</td>
<td>Janssen Pharmaceuticals</td>
</tr>
<tr>
<td>Embeda</td>
<td>morphine sulfate/naltrexone extended-release capsules</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Exalgo</td>
<td>hydromorphone hydrochloride extended-release tablets</td>
<td>Mallinckrodt</td>
</tr>
<tr>
<td>Kadian</td>
<td>morphine sulfate extended-release capsules</td>
<td>Actavis</td>
</tr>
<tr>
<td>MS Contin</td>
<td>morphine sulfate controlled-release tablets</td>
<td>Purdue Pharma</td>
</tr>
<tr>
<td>OxyContin</td>
<td>oxycodone hydrochloride tablets</td>
<td>Purdue Pharma</td>
</tr>
<tr>
<td>Opana ER</td>
<td>oxymorphone hydrochloride extended-release tablets</td>
<td>Endo Pharmaceuticals</td>
</tr>
<tr>
<td>Palladone`</td>
<td>tapentadol extended-release tablets</td>
<td>Janssen Pharmaceuticals</td>
</tr>
</tbody>
</table>
References